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The propagation of coherent light in multimode optical fibers results in a speckled output that is both complex
and sensitive to environmental effects. These properties can be a powerful tool for sensing, as small perturbations
lead to significant changes in the output of the fiber. However, the mechanism to encode spatially resolved sensing
information into the speckle pattern and the ability to extract this information are thus far unclear. In this paper,
we demonstrate that spatially dependent mode coupling is crucial to achieving spatially resolved measurements.
We leverage machine learning to quantitatively extract the spatially resolved sensing information from three fiber
types with dramatically different characteristics and demonstrate that the fiber with the highest degree of spatially
dependent mode coupling provides the greatest accuracy. © 2024 Chinese Laser Press
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1. INTRODUCTION

The propagation of light through complex media results in
behavior that has traditionally been seen as a hindrance to op-
tical systems that should be avoided or compensated for.
Precision instruments, such as gravitational-wave detectors, re-
quire ultrahigh vacuum degree to avoid material interactions
[1]. When propagation through media cannot be avoided, such
as ground-based astronomy, complex adaptive optics are used
to correct for the distortions [2]. Sometimes, light propagation
through complex media can also be used to advantage. Random
lasers are a striking example where lasing is achieved without a
defined resonator [3,4] to produce high brightness but low
coherence light for speckle-free imaging [5].

Waveguides can lead to complex light propagation even in
the absence of material inhomogeneity via their discrete trans-
verse modes whose phase relationship varies with propagation.
For an optical fiber with a fixed configuration, the resulting
output field is inherently deterministic but highly complex
in practice due to interference between the many guided
modes, interaction with the environment, and mode coupling.
Recently, there has been significant interest in understanding
and exploiting the transmission of light through multimode

optical fiber (MMF), due to its inherent ability to transport
a greater amount of information than that of single mode fiber
(SMF) [6]. A field that has particularly leveraged the power of
MMF is imaging, with applications such as endoscopy [7,8]
and fluorescence imaging [9]. MMFs have also been utilized
for applications such as high-resolution spectrometry [10,11],
laser pulse characterization [12], fiber amplifier beam shaping
[13], and control of nonlinear light generation [14]. A major
limitation of MMFs in imaging applications is their vulnerabil-
ity to mode coupling and changes in modal phase relations in-
duced by external perturbations. Efforts to overcome this
include obtaining a basis set of perturbation insensitive modes
[15] or training neural networks to extract desired information
from the noisy output [16,17]. Such sensitivity can also be used
to advantage, for example, tailoring a desired output through
deliberately applied perturbations to an MMF [18].

Optical fiber sensing can be considered as the inverse pro-
cedure to imaging. Rather than keeping the fiber and the sur-
rounding environment static and mapping from the input of
the fiber to the output, the optical input is fixed, while a
map is built between the fiber’s output and the changes to
the light propagation through it due to external perturbations.
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Possible perturbations include temperature, strain, pressure, or
even biochemical interactions, all of which can induce optical
path length changes in the optical fiber [19]. When coherent
light is coupled into an MMF, these environmental perturba-
tions lead to complex changes in the transverse spatial intensity
output (specklegram) [20]. Typically, the specklegram is ana-
lyzed by comparing the measured output to a reference image
using correlation techniques [21–23] or machine learning
[24,25]. We have recently shown that the combination of deep
learning with MMF interferometry allows for accurate sensing
even in the presence of significant environmental noise [26]. In
these cases, the sensor integrates the measurand along the
length of the fiber, effectively yielding a single longitudinal
measurement point.

The true power of optical fibers for sensing is multipoint or
distributed sensing [27–29]. This is generally achieved in SMF
using time or frequency domain interrogation methods, such as
Brillouin scattering based distributed fiber sensing [30,31]. The
following question then arises: is it possible to perform spatially
resolved sensing directly using the sensitive, but complex,
MMF interference? Recent reports indicate this is indeed pos-
sible, with deep learning being applied to extract spatial infor-
mation from an MMF’s output for sensing [32–34]. Such
demonstrations have shown the ability to classify the location
of a perturbation but were restricted to qualitative analysis.
Nevertheless, important insights can be drawn from such work,
such as that deep neural network (DNN) accuracy increases for
sensing locations along the fiber that are closer to the light in-
terrogation apparatus [33], and that a ring core fiber supporting
several weakly coupled mode groups could achieve greater ac-
curacy with less training data compared to conventional
graded-index multimode fiber [34].

In this paper, we demonstrate that mode coupling in an
MMF is essential for spatially resolving perturbations in the re-
sulting multimode interferometric output.We demonstrate this
concept by comparing the performance of three distinctly differ-
ent MMF architectures for the task of spatially resolved temper-
ature sensing: a graded-index fiber, a microstructured optical
fiber, and a sapphire crystal optical fiber. While quantitative
and distributed sensing can be achieved for all three fibers,
the sapphire fiber displays better longitudinal sensing resolution
capabilities due to significant diameter inhomogeneities formed
by the crystal fabrication process. This allows spatial information
to be more rigorously encoded in the complex interferometric
output through mode coupling. Our approach opens a new
pathway for distributed fiber sensing directly with the raw, com-
plex interference pattern output of MMFs, significantly simpli-
fying hardware requirements. It broadens the range of fiber
materials that can be deployed, such as sapphire crystal fiber,
which has great potential for sensing at extreme temperatures
beyond the working limits of silica glass [35,36], but is a chal-
lenging material to use due to its highly multimode nature.

2. CONCEPT

A. Mode Coupling Theory for Spatially Resolved
Fiber Sensing
In this paper, we investigate both theoretically and experimen-
tally the ability to perform multipoint fiber sensing directly

with the multimode interference in an MMF. We show
through the use of an MMF mode-coupling matrix theory
framework [37], which considers multimode light propagation,
mode coupling, and fiber gain/loss, that mode coupling in an
MMF gives the resulting output longitudinal spatial resolution
along the fiber axis. It is concluded that a perfectly longitudi-
nally symmetric fiber that is free from mode coupling has no
ability to longitudinally resolve perturbations, and that this
symmetry must be broken in order to resolve the position of
such perturbations. This concept is shown graphically in Fig. 1.

In this framework, the electric field propagating through an
MMF with N orthogonal transverse eigenmodes can be ex-
pressed as

E�x, y, z� �
XN
j�1

Aj�z�êj�x, y�, (1)

where êj denotes the unit electric field profile of the jth ortho-
normal transverse eigenmode, and Aj contains the amplitude
and phase of this mode. Assuming fixed eigenmodes, the light
can be described fully by the vector A,

A � �A1�z�,…,AN �z��: (2)

Propagation of this field through an optical system can be
expressed as

A�out� � M �t�A�in�, (3)

where M �t� is an N × N matrix, termed the ‘propagation ma-
trix’ of the system, which includes the effects of phase accumu-
lation, mode-dependent gain/loss, and mode coupling.

The propagation of the light through a multimode fiber can
be modeled by dividing the fiber into K adjacent sections, the
kth section having length L�k�. The kth propagation matrix can
be decomposed as

M �k� � V �k�Λ�k�U �k��, (4)

where Λ�k� represents coupling-free propagation, given by

Λ�k� �

2
6664

exp
�
1
2 g

�k�
1 − iϕ�k�

1

�
0

. .
.

0 exp
�
1
2 g

�k�
N − iϕ�k�

N

�

3
7775,

(5)

and U �k� and V �k� denote the input and output coupling
matrices to and from the kth section, respectively. The real
part of the exponential arguments in Eq. (5) describes
mode-dependent loss or gain, where g �k�j is the gain coefficient

of the jth mode in the kth section of fiber (positive g �k�j denotes
gain, while a negative value denotes loss). The imaginary part,
iϕ�k�

j , where ϕ�k�
j � βjL�k� and βj denotes the propagation con-

stant of the jth mode, describes the accumulated phase of the
jth mode as it passes through the kth section of fiber. This is
mode-dependent due to effects such as modal dispersion and
mode-dependent chromatic dispersion.

Propagation of light through the entire fiber can be repre-
sented by a cascade of K propagation matrices as in Eq. (6):
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M �t� � M �K �M �K −1�…M �k�…M �2�M �1�: (6)

Now consider that the kth section of fiber experiences a per-
turbation, inducing mode-dependent optical path length
changes and hence phase changes in this section. Such a per-
turbation can be modeled by a diagonal perturbation matrix Λ̃
[Eq. (7)], which describes the change in optical path length that
each mode experiences:

Λ̃ �

2
64
exp�−iΔϕ1� 0

. .
.

0 exp�−iΔϕN �

3
75: (7)

Hence, the total propagation matrix in the presence of this
perturbation is given by Eq. (8):

M �t� � M �K �M �K −1�…V �k�Λ̃Λ�k�U �k��…M �2�M �1�: (8)

The matrix multiplication U �k�1��V �k�, represents projec-
tion of the field from the modal basis in the kth section to the
�k � 1�th section, i.e., mode coupling. If the modal bases are
identical, this term reduces to the identity matrix, and no mode
coupling occurs. Otherwise, off-diagonal terms will be present.

Consider now a longitudinally invariant MMF that experi-
ences no mode coupling. M �t� will be the product of diagonal
uncoupled propagation matrices and products of input and
output coupling matrices projecting the fiber’s modal basis onto
itself, each time producing the identity matrix. Hence, M �t�

will itself be diagonal, with the jth diagonal element represent-
ing the sum of the gain/loss and phase accumulated by the jth

mode. In the presence of a perturbation, Λ̃, the jth phase
change will simply be added to the jth diagonal element of
M �t�, regardless of which section of fiber the perturbation
was applied to. Hence, such a longitudinally symmetric fiber
possesses no mechanism by which the perturbation can be spa-
tially resolved.

Now consider an MMF with longitudinal variance, and
hence coupling between the modal bases of each adjacent sec-
tion of the fiber.M �t� will no longer be diagonal, as off-diagonal
terms representing the coupling of power between modes will
be present. As such, it will also be dependent on the order of
multiplication of the constituent propagation matrices. Hence
in the presence of optical path length changes due to a pertur-
bation, the fiber’s output will be dependent on the position of
this perturbation along the fiber. Furthermore, the degree to
which the fiber’s output is sensitive to this spatial information
will be inversely dependent on the degree to which adjacent
propagation matrices commute, suggesting that stronger mode
coupling will more rigorously encode spatially resolved infor-
mation, in the fiber’s output. Higher mode-coupling strength
also allows the fiber to be divided into sections of shorter L�k�,
hence affording a higher degree of spatial resolution.

It should be noted that even in the case of strong mode cou-
pling, the transmission matrix can still be diagonal if a particu-
lar basis is used, namely the spatial eigenmode basis of the said
mode-coupling MMF [38]. If the input field has the spatial
profile of one of these spatial eigenmodes, then it will be re-
constructed at the output of the fiber. However, these modes

Fig. 1. Concept of spatially resolved sensing enabled by distributed mode mixing: comparison between a longitudinally invariant fiber and a fiber
with diameter variations. The light within a multimode optical fiber consists of a superposition of eigenmodes, each carrying a portion of the total
power propagating in the fiber. A perturbation on the fiber will induce mode-dependent phase changes, which will manifest as a change in the output
of the fiber, whether this is the spatial interference pattern (specklegram) shown in the figure, or the wavelength domain interference spectrum used
in this work. In this figure, two different longitudinal positions that experience identical perturbations are shown in green and purple, resulting in the
corresponding color-coded modal amplitudes. For a perfectly longitudinally invariant fiber (left), the position of this perturbation will be indis-
tinguishable at the output, as the modes will travel through the fiber free from coupling and power redistribution, thus rendering the effect of mode-
dependent optical path length changes position-independent. In the case of an optical fiber with longitudinal variations (right), mode coupling leads
to modal power redistribution, rendering the effect of these path length changes position-dependent, hence allowing for longitudinally resolved
sensing.
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are not truly propagation invariant in the sense that they do not
propagate through the MMF with a fixed form while scaling in
phase and gain/loss, as is the case for the transverse eigenmode
basis discussed above. These spatial eigenmodes are linear com-
binations of transverse eigenmodes, which still couple between
each other in the presence of fiber inhomogeneities as they
propagate.

Any perturbation or length change in this case will distort
the total transmission matrix, and thus the defined spatial ei-
genmode basis no longer holds. Since the physical mode-cou-
pling process between transverse eigenmodes is not dependent
on the basis chosen, perturbations at different locations along
the MMF will lead to different outputs. It is only for the case of
truly propagation-invariant transverse eigenmodes that are free
from coupling throughout propagation, that is, in a longitudi-
nally uniform MMF, that sensing information along the fiber
will not be encoded.

The information encoded by mode coupling is, however,
included in the output field in a complex and non-trivial
way. We have previously shown that deep learning proves
an effective method for extracting single-point sensing informa-
tion from a complex MMF output [26]. In this work, deep
learning is used as a tool for extracting distributed sensing in-
formation from this output.

B. Generation of a Wavelength Intensity Spectrum
from a Specklegram
In our experiment (Section 3), we convert the specklegram to a
wavelength domain interference spectrum by splicing the
MMF to SMF. This is done for practicality as the spliced fiber
connection is stable and compatible with high temperatures.
To understand that this approach is equivalent to measuring
the specklegram, consider again that Eq. (6) represents the
propagation of light through an MMF. Coupling from this
MMF into an SMF, and the subsequent propagation of the
light, can be represented by multiplying the right-hand side
of Eq. (6) on the left by V �SMF�Λ�SMF�U �SMF��, where Λ�SMF�

is a 1 × 1matrix simply describing the change in amplitude and
phase of the light propagating through the SMF. If N eigenm-
odes are propagating in the K th (final) section of the MMF,
then U �SMF��V �K � will be a 1 × N matrix representing the pro-
jection of these N modes onto the single mode basis. This pro-
jection, and consequently the power propagating in this single
mode, are dependent on the modal power distribution and rel-
ative phases of the N modes, which in turn are dependent on
the wavelength of the propagating light. By measuring the in-
tensity output by the SMF at various wavelengths, one obtains
a wavelength intensity interference spectrum. Effectively, the
information carried by the MMF transmission is projected onto
a single value when coupled into the SMF, but one can restore
this information by scanning across a range of wavelengths,
thus transforming the information from the modal domain
to the wavelength domain. Consequently, if the multimode
speckle contains spatially resolved information as a result of
mode coupling, then the wavelength spectrum, which is depen-
dent upon the speckle, will also have this information encoded.

Generally, the SMF will have a smaller core than the MMF,
and hence the vector of modal overlaps given by U �SMF��V �K �

will be less than unity and power will be lost. However, the

information from a multimode speckle is not contained spa-
tially, but rather in the modal power distribution and relative
phases. As U �SMF��V �K � is dependent purely on the modal pro-
files êj�x, y�, which are constant for uncoupled propagation, the
contribution of each mode towards the power propagating in
the single mode in the SMF will remain constant and nonzero.
Hence, no distributed sensing information is lost in this cou-
pling process.

3. EXPERIMENTAL METHOD

A. Experimental Overview
Two experiments were performed to demonstrate the spatially
resolved sensing concept described in this paper, (1) a localized
heating experiment and (2) a distributed sensing experiment. In
both experiments we tested the effect of spatial heat distribu-
tions on the output of three different optical fiber sensors, a
sapphire optical fiber (75 μm diameter, Micromaterials), an
in-house fabricated suspended-core fiber (SCF) (7 μm effective
core diameter) [39], and a graded-index (GRIN) fiber (OM1,
FS). An overview of the method used to collect wavelength in-
terference spectra from these fibers is shown in Fig. 2(a), with a
detailed schematic of the sensors displayed in Fig. 2(b). An
SMF–MMF–SMF configuration was formed from a single
SMF–MMF splice and the back-reflection from the end facet
of the sensing fibers, converting the MMF speckle information
into an interference spectrum in the wavelength domain.
Polarization maintaining SMF was used in conjunction with
inline polarizers to prevent polarization mode coupling within
the SMF.

The wavelength interference spectra were collected from the
fibers using a Hyperion si155 swept source interrogator (Luna
Technologies). These spectra existed in the interrogator as
20,000 wavelength points across the 1460–1620 nm range,
but were decimated down to 1000 points for computer
memory purposes. The first 25 points of these spectra were re-
moved due to a tail at the low-frequency end of the sapphire
fiber spectra that disproportionately affected normalization, re-
sulting in 975-point spectra. Low-frequency Fourier filtering
was performed to remove a strong back-reflection from the
sensing fiber/SMF splice in the sapphire fiber spectra and per-
formed on the spectra from the other two fibers for consistency.

In the localized heating experiment, represented in Fig. 2(c),
a localized and constant heat distribution through means of an
aluminum block attached to a Peltier heater, translated via a
linear translation stage, was applied along the fiber length.
The aim of this experiment was to compare the degree to which
the location of a perturbation along the fiber leads to differences
in the optical output. To assess this effect, the correlation of the
MMF output relative to a reference spectrum was measured
[see Eq. (9)] to determine the degree to which the output is
dependent on the position of the applied perturbation.

The second experiment, represented in Fig. 2(d), subjected
the fibers to a range of different temperature distributions gen-
erated by a furnace, and used deep learning to extract the spa-
tially resolved sensing information from their outputs. The aim
of this experiment was to test and compare the three fibers
using the temperature distribution of the furnace as an example
of a spatially resolved sensing task. The ability for a deep learn-
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ing model to converge to an accurate model based on the
spectra collected from each of the fibers was indicative of
the degree to which useful, spatially resolved sensing informa-
tion was encoded in their outputs and could be quantitatively
extracted.

B. Fiber Sensors
The technical characteristics of the three fibers are compared in
Table 1, with a summary of their characteristics as follows. The
sapphire fiber is fabricated via crystal growth, rather than by

preform fabrication as in the manufacturing process of conven-
tional glass optical fibers. As such, the sapphire fiber has signifi-
cant longitudinal diameter variations of the order of �10 μm
(∼25% variation, see Fig. 3), leading to strong spatially depen-
dent mode coupling as light propagates through it. The SCF is
designed for temperature sensing, supporting the propagation of
modes with relatively large differences in thermo-optic response
compared to solid fibers [40]. In contrast to the sapphire fiber,
both the SCF and GRIN fibers are designed and fabricated with
highly consistent diameter (<3% variation).

Table 1. Comparison between the Three Sensing Fibers for a Few Relevant Properties, Including Cross-Sectional
Image/Refractive Index Profile, Numerical Apertures, Core Diameters, and an Approximate Number of Supported Modes

Sapphire Suspended-Core Graded-Index

Cross section image or refractive index profile

Numerical aperture 1.46 0.2 0.275
Core diameter 75 μm 7 μm 62.5 μm
Approximate number of supported modes 100,000 200 200

Fig. 2. Experimental setup. (a) Overview of the setup used to collect wavelength intensity spectra from the fibers under different temperature
distributions. (b) Schematic and dimensions of the sensors. The length of sensing fiber for each of the sensors was 0.13 m for the sapphire fiber,
0.24 m for the suspended-core fiber, and 0.29 m for the graded-index fiber. The fibers were housed within Inconel tubing to shield them from
potential contaminants that would burn at high temperatures. The tubing was sealed with high temperature glue at the proximal end and a crimp at
the distal end. (c) Experimental setup for the localized heating experiment. (d) Experimental setup for the furnace heating experiment. The fibers
were subjected to various temperature distributions by being placed in a furnace, with the distributions being varied by manually translating the
fibers relative to the furnace and applying a range of furnace temperatures per sensor position.
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A 10-point FBG sensor was placed alongside the three sens-
ing fibers to characterize the temperature distributions that the
fibers were subjected to and provide temperature labels for the
deep learning. This FBG sensor consisted of 10 femtosecond
laser ablation written gratings inscribed in a suspended-core mi-
crostructured optical fiber [41–43]. The 10 FBGs were spaced
15 mm apart, thus performing temperature sensing over a
135 mm length.

C. Zero-Normalized Cross Correlation
For the first, localized heating experiment, the changes experi-
enced by each fiber’s wavelength intensity spectra I�λ� were
quantified using the zero-normalized cross-correlation function
[ZNCC, Eq. (9)] of each spectrum against a reference spec-
trum. The ZNCC is defined as

Z �I�λ�	 �
P

λ�I 0�λ� − I0	�I�λ� − Ī 	
fPλ �I0�λ� − I 0	2

P
λ �I�λ� − Ī 	2g

1
2

, (9)

where I 0�λ� denotes the reference intensity spectrum and the
bar denotes the average intensity of given spectra.

D. Deep Learning
Two neural networks were employed for the second, distrib-
uted sensing experiment: a multilayer perceptron model [44]
with four hidden layers and 672,842 trainable parameters,
and a linear regressor with 9760 trainable parameters. The lin-
ear regressor learns an output that is simply a linear combina-
tion of the input values. In-depth summaries of the neural
networks and the training process are given in Appendix A.

The two different DNN architectures were chosen to assess
the degree to which spatially resolved sensing information was
encoded in the wavelength spectra of the fiber outputs, by cor-
relating this with the convergence ability and accuracy of the
trained models. That is, the aim of this experiment was not
necessarily to produce an accurate temperature sensor, but
rather to assess the ability of the fibers in projecting sensing
information from the spatial domain to the modal domain
and finally the wavelength domain. Hence a weaker model
was used to induce greater contrast in training and performance

when trained on outputs from the three fibers, allowing for
clearer conclusions to be made.

It should be noted that the models will not generalize well to
spectra collected under different environmental conditions to
those that the models were trained on. The following experi-
ments were not designed to investigate generalization capabil-
ities with the aim of producing a field-ready sensor. Rather, they
aim to verify the concepts presented in Section 2 with deep
learning used as our analysis tool.

4. RESULTS

A. Localized Heating: Correlation Analysis
The first set of results is from the localized heating experiment.
Wavelength spectra were recorded while the heater was sequen-
tially moved to five equidistant positions along the length
of the fibers. The correlation coefficient for each spectrum
was calculated against a reference spectrum from the first
temperature profile, and the average correlation coefficient
values [Eq. (9)] for each position were calculated and are dis-
played in Fig. 4(a). The thermal distribution at each heating
position is shown in Fig. 4(b). A lower correlation coefficient
for a spectrum indicates relatively larger decorrelation from the
reference spectrum. Hence unique correlation values for differ-
ent heating locations, continuously decreasing from the refer-
ence spectrum, indicate longitudinal resolution in the fiber
output.

Figures 4(c)-4(e) show example wavelength spectra for the
sapphire, suspended-core, and graded-index fibers, respectively,
for the five heater locations. The spectra are zoomed in to a
∼10 nm range to display the spectral features more clearly.

The results indicate that the recorded spectra from each fiber
have different dependencies on the position of the thermal per-
turbation. It is clearly shown that the spectrum of the sapphire
fiber is more dependent on the position of the heater, as indi-
cated by the correlation coefficient continuously decreasing
with heater translation. Although the correlation only decreases
from 1 to around 0.94, this still indicates clearly unique spectra
for each heating position and hence spatial resolution in the
output of the fiber. The spectra collected from the SCF and
GRIN fiber do not display this dependence as clearly, with

Fig. 3. Variation in sapphire fiber diameter as a function of position for two samples of fiber, highlighting the variability. (a) This section was
arbitrarily selected. (b) This section was selected as an extreme example of strong variation in diameter. The lengths of fiber were selected from the
same, originally longer length of sapphire fiber, as used in the main experiment.

416 Vol. 12, No. 3 / March 2024 / Photonics Research Research Article



the respective correlation coefficients staying closer to unity
over the whole range of the fiber lengths. As argued in the
theory, weak mode coupling implies that the effect of a pertur-
bation on the fiber’s output will only be weakly dependent on
the position of the perturbation, leading to similar outputs for
the different temperature profiles. In contrast, strong location
dependency indicates strong mode coupling; hence the corre-
lation coefficient decreases quicker as the location of the per-
turbation is shifted.

With reference to the specific fibers used, it is the significant
longitudinal variance of the sapphire fiber, shown in Fig. 3,
which induces mode coupling continuously along the fiber axis
and direction of light propagation, hence enhancing the
strength of spatially resolved sensing information encoded in
the multimode interferometric output. The SCF and GRIN
fibers are expected to exhibit much less mode coupling due
to being drawn with minimal longitudinal variations.

B. Distributed Heating: Deep Learning Analysis
The results from the second experiment show the tempera-
ture predictions made by the DNNs trained on wavelength
spectra from each fiber under different temperature distribu-
tions produced by a furnace. To subject the sensing fibers to
various temperature distributions, two dimensions of varia-
tion were applied. First, data was collected with the fibers in
seven different locations relative to the furnace. This was
achieved by manually translating the fibers along their fiber
axis relative to the furnace. Three of these positions are shown
in Fig. 5, with Fig. 5(a) showing distributions from a posi-
tion where the temperature sensing points were all fully
within the furnace, hence a uniform distribution, Fig. 5(c)
showing a sensor position where the sensor was located out-
side of the furnace, hence only the end of the fibers receiving
a small amount of heat, and Fig. 5(b) showing a sensor po-
sition between these extremes. For each sensor position, the

Fig. 4. Results from the localized heating experiment. (a) Average correlation coefficient of spectra collected during each 30 min heating position
against the reference spectrum. (b) Heat distributions from the localized heating experiment, as taken using the FBG sensor. (c)–(e) Example spectra
over a zoomed-in wavelength range from all five heating positions for the sapphire, suspended-core, and graded-index fiber, respectively.
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furnace was left to cool from 500°C to 50°C over a period
of 20 h.

Figures 6(a)–6(c) show the predictions made by the linear
regressor, while Figs. 6(d)–6(f ) show those made by the MLP.
The associated RMS error for each set of predictions is dis-
played. The temperature labels were collected by the 10-point
FBG sensor, across which the temperature distributions gener-
ated by the furnace were resolved. The DNNs had 10 nodes in
their output layer, hence being trained to predict the 10-point
temperature distributions. The full set of predictions on all 10
sensing points (for the 47,600 test spectra) is included in each
plot of Figs. 6(a)–6(f ), while the error as a function of each
sensing point is shown in Figs. 6(g) and 6(h).

The 10 sensing points correspond to each of the 10 FBGs
used for collecting training samples, remaining fixed relative to
the sensors (as in Fig. 5). Hence each column of Figs. 6(g) and
6(h) represents all temperatures for a single fixed point on the
sensors across the entire dataset. This range of temperatures will
differ between each sensing point as they are spatially resolved
and experience different temperatures for a given spatial tem-
perature distribution.

The MLP is able to predict the 10-point temperature dis-
tribution under which the unseen test set of spectra was col-
lected with high accuracy for all three fibers. Given the
heavily reduced number of trainable parameters compared to
the MLP, the linear regressor model overall converges to a
higher loss value yet displays a greater contrast in this conver-
gence between the models trained on the three different fibers’
outputs.

As discussed in Section 2, mode coupling should be required
to perform spatially resolved fiber sensing with an otherwise
unaltered fiber. The fact that the MLP performs accurately
when trained on spectra from any of the three fibers can be
attributed to several effects. First, even the SCF and GRIN fi-
bers possess an inherent level of mode coupling, and our results

indicate that this may be sufficient to encode spatially resolved
sensing information in the spectra, at least to the 15 mm res-
olution afforded by the FBGs used to collect temperature labels
for training. Further mode coupling may also be induced by the
sensing parameter itself, as temperature variations lead to refrac-
tive index modulations.

The results from the linear regressor showmore clearly a quan-
titative difference in DNN performance. The model achieves an
RMS error of 1.8°C when trained on spectra from the sapphire
fiber, 3.6°C for the SCF spectra, and 41°C for the GRIN fiber
spectra. The lower-capacity linear model used gives a greater con-
trast in model performance, allowing conclusions to be made re-
garding the ability for the model to extract longitudinally resolved
sensing information from the spectra from the different models.
In agreement with our theoretical framework and the correlation
analysis results, the sapphire fiber shows better sensitivity to the
position of a perturbation, or in the more general case, the spatial
distribution of a perturbation.

5. DISCUSSION AND CONCLUSION

The results presented support the concept that deep learning
can be used to extract distributed sensing information directly
from the output of an MMF. The presence of mode coupling
facilitates the encoding of this information in the output of the
fiber, leading to spatial resolution along the direction of light
propagation that may be exploited for sensing.

The localized heating experiment demonstrated that the
output of the sapphire fiber in the presence of a localized per-
turbation is more positionally dependent than that of the SCF
and GRIN fibers. This is reflected in Fig. 4(a), as the sapphire
spectrum decorrelates from the reference spectrum in the pres-
ence of translation of the heat perturbation in a clear and con-
tinuous manner that is not seen in the spectra of the SCF and
GRIN fibers, demonstrating spatial resolution enabled by
mode coupling.

Fig. 5. Heat distributions from the furnace heating experiment. Note that this is a representation of the axis along which the sensors were
translated and the approximate relative sensor positions and is not to scale. (a)–(c) Temperature distributions from three different sensor positions.
Within each plot/sensor position, the temperature distributions from three different furnace temperatures are shown.
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We then applied deep learning to decode spatially resolved
sensing information from the output of the MMFs, comparing
the convergence ability and accuracy of the models when
trained on spectra from the three fibers. The overall accuracy
of the higher-capacity MLP can be attributed to the small
amount of unavoidable mode coupling that these fibers possess,
as well as mode coupling induced by the perturbation itself. As
such, sufficient distributed temperature information is encoded
in the spectra of all three fibers for the DNN to extract in its
training process.

The performance of the linear regressor, however, gives more
insight into how clearly each fiber encodes distributed sensing
information in its output. This low-capacity model is able to

extract this information from the sapphire fiber spectra to an
RMS error of 1.8°C, half that of the SCF, and 20 times less
than that of the GRIN fiber. This is aided by the mode cou-
pling that occurs along the sapphire fiber’s length, encoding
longitudinally resolved sensing information in the multimode
interferometric output, which can be more efficiently extracted
through deep learning techniques. It can be concluded that the
sapphire fiber exhibits stronger mode coupling than that of
the SCF and GRIN fiber, and the spatial resolution of sensing
information encoded in the corresponding outputs follows
from this.

We have demonstrated spatially resolved sensing to a reso-
lution of 15 mm, as set by the FBGs used to collect training

Fig. 6. Predictions made by the DNNs on the 10-point temperature distributions from the test wavelength interference spectra. (a)–(c) show
predictions made by the linear regressor. (d)–(f ) show predictions made by the MLP. (a) and (d) show the predictions from DNNs trained on
sapphire spectra, (b) and (e) SCF spectra, and (c) and (f ) graded-index (GRIN) fiber spectra. (g) and (h) show the RMS error for (g) linear regressor
and (h) multilayer perceptron for each sensing position along the three fibers.
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labels. The success of the DNNs with our method of data col-
lection and analysis suggests that shorter resolutions are pos-
sible. Ultimately, the spatial resolution of this method is set
by the strength of mode coupling within the fiber and the
capacity of the DNN. Further work is required to collect train-
ing labels at a sufficiently small resolution such that the effect of
these limitations may be explored.

Our work has clearly demonstrated that mode coupling is
the essential feature that allows spatially resolved information to
be encoded in the interferometric output of a multimode fiber.
While strong mode coupling from large waveguide inhomoge-
neities can lead to enhanced distributed sensing capability, we
observed that quantitative distributed sensing can still be
achieved in relatively longitudinally invariant fibers. This is
likely due to inherent manufacturing tolerances and the varia-
tions induced by the sensor parameter itself (thermo-optic ef-
fect in our example). Our method can thus be generally applied
to distributed fiber sensing even using commercially available
fiber, provided a suitable method of extracting the distributed
sensing information, such as deep learning, can be applied.
Further, we believe these findings will have wider implications
in optical sensing, such as the use of other complex media.

APPENDIX A: DEEP NEURAL NETWORKS

Two neural network architectures were used for taking MMF
wavelength intensity spectra as their inputs and mapping to 10-
point temperature distributions. The first was a multilayer per-
ceptron (MLP) with four hidden layers and ReLU nonlinear
activation [45], while the second was a simple linear regressor.
The input layer for both was the 975-point normalized wave-
length intensity spectra, and the output layer was the 10-point
temperature distribution.

The neural networks were built using the Keras modular
deep learning library for Python. Summaries of the two archi-
tectures are displayed in Table 2 (MLP) and Table 3 (linear
regressor). Training was performed on an NVIDIA GeForce
RTX 2070 GPU. The 150 epoch-long training process took
around 2 h for the four-layer model, and around 20 min
for the linear regressor.

The complete dataset consisted of 476,000 spectra for each
fiber. Following normalization as per an L2 normalization tech-
nique and preceding training, this set was shuffled and split into
three groups: 80% for training, 10% for validation, and 10%
for testing. The training set was used to train the model and the

Table 2. Architecture of the Multilayer Perceptrona

Layer Type Output Shape Number of Parameters

Input layer (1,975) -
Dense hidden layer (1,512) 499,712
Dense hidden layer (1,256) 131,328
Dense hidden layer (1,128) 32,896
Dense hidden layer (1,64) 8256
Output layer (1,10) 650
Total number of trainable parameters 672,842

aThe size and number of trainable parameters of each layer are given.

Table 3. Architecture of the Linear Regressora

Layer Type Output Shape Number of Parameters

Input layer (1,975) -
Output layer (1,10) 9760
Total number of trainable parameters 9760

aThe size and number of trainable parameters of each layer are given.

Fig. 7. Deep neural network loss history. (a)–(c) Training (blue) and validation (red) mean-squared error (MSE) loss as a function of epoch for the
MLP trained on (a) sapphire fiber spectra, (b) SCF spectra, and (c) graded-index (GRIN) fiber spectra. (d)–(f ) Training and validation mean-squared
error loss as a function of epoch for the linear regressor trained on (d) sapphire fiber spectra, (e) SCF spectra, and (f ) GRIN fiber spectra.
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validation set was used to test the prediction ability and mon-
itor the performance of the model during preliminary training
runs. The test set was kept aside and only used to make
predictions using the final trained model and generate the re-
sults seen in this work.

The deep learning model began the training process with
randomized parameters. Then, mini-batches of 64 spectra were
randomly selected from the training set and passed through the
model. The loss (cost function) of the model was calculated
using the mean-squared-error (MSE) metric, and backpropaga-
tion performed to adjust the model towards one with a lower
loss [46]. This process was repeated with the mini-batches of 64
training samples, until all samples had been used. This con-
cluded one epoch of training. Training was performed for
150 epochs, with the end-of-epoch model exhibiting the lowest
loss kept as the final model.

Backpropagation and stochastic gradient descent were per-
formed using the Adam optimizer [47], with a learning rate of
10−2 for the linear regressor, and 10−3 for the MLP. These val-
ues were chosen through brief experimentation as suitably sen-
sitive values for the given architectures.

The training and validation loss as a function of epoch is
shown in Fig. 7. In none of the cases is underfitting (charac-
terized by lack of convergence) or overfitting (characterized by
the simultaneous convergence of the training loss and diver-
gence of the validation loss) present [48], indicating a suitable
selection of architectures and hyperparameters for the given
dataset.
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